
Multi Processes and Scheduling

ECE 469, Mar 04

Aravind Machiry

1

Recap: Users, Programs, Processes

● Users have accounts on the system

● Users launch programs

● There can be multiple programs (i.e., processes), which want to run at the same
time

2

Sequential execution of each process

● Assuming single-threaded program

● No concurrency inside a process

● Everything happens sequentially

● Often with interleaved CPU/IO operations

3

Process Life Cycle

Running

BlockedReady

Scheduler

disp
atc

h W
ait for

resource

Resource becomes
available

Create
a process

terminate

4

Non-Preemptive Scheduling

Running

BlockedReady

Scheduler

disp
atc

h

Resource becomes
available

Create
a process

Terminate

Block for resource

5

Non-Preemptive Scheduling

Running

BlockedReady

Scheduler

disp
atc

h

Resource becomes
available

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

6

● Any issues?

● What if a process runs:

Non-Preemptive Scheduling

7

Concurrent Processes

● Processes in a system can execute concurrently (multitasking)

● Motivations for allowing concurrent execution
○ Physical resource sharing (system utilization)
○ Computational speedup – with several CPUs
○ Modularity (chrome)
○ Convenience (desktop: chrome, google drive, clock, weather)

● Logical resource sharing (eg password files)

8

Time Sharing Systems

● Timesharing systems support interactive use:
○ each user feels he/she has the entire machine

● How?
○ optimize response time
○ based on time-slicing

9

● Basic idea

○ before moving process to running, OS sets timer

○ if process yields/blocks, clear timer, go to scheduler

○ If timer expires, go to scheduler

Preemptive Scheduling

10

● How does the OS know that the timer expired?

Preemptive Scheduling

11

Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum

• E.g., 1000Hz, on each 1ms.. OS Kernel (Ring 0)

Ring 3

12

Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum

• E.g., 1000Hz, on each 1ms..

After
1ms

Timer interrupt!

OS Kernel (Ring 0)

Ring 3

13

Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum

• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

14

Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to
force execution at kernel after
some time quantum

• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource

contention

OS Kernel (Ring 0)

Ring 3

Schedule()

iret (ring 0 to ring 3)

15

● Definition: Switching the CPU to another process, which involves
saving the state of the old process and loading the state of the new
process

● What state?

● Where to store them?

Context Switch

16

● A.K.A User Environment (JOS)

● Process management info
○ State (ready, running, blocked)
○ PC & Registers, parents, etc
○ CPU scheduling info (priorities, etc.)

● Memory management info
○ Segments, page table, stats, etc

● I/O and file management
○ Communication ports, directories, file descriptors, etc

Process State: Process Control Block (PCB)

17

Context Switch

18

Context Switch

Context
Switch
overhead

19

● Timer granularity
○ Finer timers = more responsive, high overhead
○ Coarser timers = less responsive, more efficient

● CPU Accounting (CPU running stats)
○ Used by the scheduler
○ Useful for the programmer

Preemptive Scheduling Considerations

20

● Mechanism + policy

● Mechanisms fairly simple:
○ Save state into a PCB and Restore state from another PCB

Preemptive Scheduling Considerations

21

● Mechanism + policy

● Mechanisms fairly simple:
○ Save state into a PCB and Restore state from another PCB

● Policy choices harder:
○ When should we switch?

Preemptive Scheduling Considerations

22

● Flexibility - variability in job types
○ Long vs. short
○ Interactive vs. non-interactive
○ I/O-bound vs. compute-bound

● Issues
○ Short jobs shouldn’t suffer
○ (Interactive) Users shouldn’t be annoyed

Challenges in Policy

23

● Fairness
○ All users should get access to CPU
○ Amount of CPU should be roughly even?

● Issue
○ Short-term vs. long-term fairness

Challenges in Policy (2)

24

Goals
● Goals (Performance metrics)

● Minimize turnaround time

● avg time to complete a job

● T
turnaround

 = T
completion

 − T
arrival

● Maximize throughput

● operations (jobs) per second

● Minimize overhead of context switches: large quanta

● Efficient utilization (CPU, memory, disk etc)

● Short response time

● T
response

 = T
firstrun

 − T
arrival

● type on a keyboard

● Small quanta

● Fairness

● fair, no stavaton, no deadlock

25

● Goals often conflict
○ Response time vs. throughput
○ fairness vs. avg turnaround time?

Goals

26

Goals and Assumptions
● Goals (Performance metrics)

● Minimize turnaround time

● avg time to complete a job

● T
turnaround

 = T
completion

 − T
arrival

● Maximize throughput

● operations (jobs) per second

● Minimize overhead of context switches: large quanta

● Efficient utilization (CPU, memory, disk etc)

● Short response time

● T
response

 = T
firstrun

 − T
arrival

● type on a keyboard

● Small quanta

● Fairness

● fair, no stavaton, no deadlock

27

● Is there an optimal scheduling policy?
○ Even if we narrow down to one goal?

● But we don’t know about future
○ Offline vs. online

Scheduling Policies

28

● Round Robin
● SJCF
● SRTCF

Scheduling Policies

29

● Each runs a time slice or quantum: Fair

● How do you choose time slice?
○ Overhead vs. response time
○ Overhead is typically about 1% or less
○ Quantum typically between 10 ~ 100 millisec

Round Robin

Current
process

Ready queue

30

● Assume 10 jobs waiting to be scheduled, each takes 100 seconds
○ Assume no other overhead
○ Total CPU time? 1000 seconds, always

● Implications?
○ Last job always finishes at 1000 seconds
○ So what’s the point of scheduling?

Is Fairness always good?

31

● Job 1 – start 0, end 100
● Job 2 – start 100, end 200
● …
● Job 10 – start 900, end 1000

● Average turnaround time =100 + 200 +… /10 = 550 sec

Non-Preemptive Scheduling or FIFO

32

● Assume each quantum is 1 second

● Job 0 – 0, 10, 20, 30, 40,…, 990
● Job 1 – 1, 11, 21, 31,…, 991
● Job 2 – 2, 12, 22, 32,…, 992
● …

● Avg turnaround time = 990+991+…/10 = 995 sec

Round Robin

33

● Unfair policy was faster!

● Job 10 always ended at the same time

● Round-Robin just hurt jobs 1-9 with no gain

Is Fairness always good?

34

● Imagine 10 jobs
○ Jobs 1-9 are 100 seconds
○ Job 10 is 10 seconds

● Which policy is better now?

Why use Round Robin?

35

● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

Non-preemptive scheduling

36

● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

● Job 0 – start 0, end 100
● Job 1 – start 100, end 200
● Job 10 – start 900, end 910

● Avg turnaround time = 100+200+…910/10 = 541

Non-preemptive scheduling

37

● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

● Job 0 – 0, 10, 20, …, 900
● Job 1 – 1, 11, 21, …, 901
● Job 10 – 9, 19, 29, …, 99

● Avg turnaround time = 900 + 901 + 908 + 99 / 10 = 824

Round Robin scheduling

38

● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

● Job 0 – 0, 10, 20, …, 900
● Job 1 – 1, 11, 21, …, 901
● Job 10 – 9, 19, 29, …, 99

● Avg turnaround time = 900 + 901 + 908 + 99 / 10 = 824

Round Robin scheduling

9% work drop

2% avg turnaround drop for
FIFO

17% avg turnaround drop for
RR

39

● Imagine 10 jobs
○ Jobs 1 is 100 seconds
○ Job 2-10 is 10 seconds

● Which policy is better now?
○ FIFO: average turnaround 145
○ RR: average turnaround 105

Why use Round Robin?

40

● What shall we do if we care about turn-around time?
○ FIFO can be bad

● STCF/SJF
○ schedule shortest (total completion time) job first

STCF (SJF) – Shortest Job First

A BC

T1

C arrives
A arrives

B arrives

A B C

T1

C arrives
A arrives

B arrives

41

● Can we do better than Shortest Job First in terms of average
turnaround time?
○ Assume all jobs arrive at the beginning

● In fact, SJF can be proved to be the optimal scheduling algorithm with
the above assumption
○ But we are not going to prove it, since this is not a theory class ☺

● SJF Advantage
○ Minimal average turnaround time

● Disadvantage
○ Difficult to know the future, has to run until finish

SJF: Pros and Cons

42

STCF
● Shortest time to completion first (shortest job first)

○ Non-preemptive

A BC

T1

C arrives

A arrives B arrives

43

SRTCF
● Shortest remaining time to completion first

○ Preemptive

A BC

T1

C arrives

A arrives B arrives

CC

Any potential problems?
 - Can cause starvation!

44

● Need to accommodate interactive jobs
○ Need some kind of RR

● Diversity in jobs – job length, I/O mix
○ RR also appears to help

● SJF also has virtue
○ Reduce avg. turnaround time

● Can we accommodate all?

Policy Decisions

45

Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

46

Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

47

Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

48

Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

49

Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness

50

Scheduling Policy Issues

● Fairness

● Flexibility

● High utilization (efficiency)

● Good response time

● Good turnaround time

51

Scheduling Policy Issues

● High utilization (efficiency)
○ Lots of processes (want diff resources)
○ Lots of resources (want full parallelism)

● Issue?
○ How do you get the most useful work out of the system? (job

throughput)

52

Adding I/O into mix

● Resource utilization example
○ A and B each uses 100% CPU
○ C loops forever (1ms CPU and 10ms disk)
○ Time slice 99ms: roughly 30% of disk utilization with Round Robin

and roughly 70% of CPU utilization
○ Time slice 1ms: roughly 90% of disk utilization with Round Robin

and nearly 100% of CPU utilization

● What do we learn from this example?
○ Small time slice can improve utilization / fairness to I/O jobs

53

Handling I/Os

CPU

I/O

A

A

A

A

A

A

BA

A

54

Handling I/Os

CPU

I/O

A B

A

A

A

A

A

B A

A

B

