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Recap: Users, Programs, Processes

● Users have accounts on the system

● Users launch programs

● There can be multiple programs (i.e., processes), which want to run at the same 
time
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Sequential execution of each process

● Assuming single-threaded program

● No concurrency inside a process

● Everything happens sequentially

● Often with interleaved CPU/IO operations
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Process Life Cycle
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Non-Preemptive Scheduling
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Non-Preemptive Scheduling
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● Any issues?

● What if a process runs:

Non-Preemptive Scheduling
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Concurrent Processes

● Processes in a system can execute concurrently (multitasking)

● Motivations for allowing concurrent execution
○ Physical resource sharing (system utilization)
○ Computational speedup – with several CPUs
○ Modularity (chrome)
○ Convenience (desktop: chrome, google drive, clock, weather) 

● Logical resource sharing (eg password files)
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Time Sharing Systems

● Timesharing systems support interactive use:
○  each user feels he/she has the entire machine

● How?
○ optimize response time 
○ based on time-slicing
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● Basic idea

○ before moving process to running, OS sets timer

○ if process yields/blocks, clear timer, go to scheduler

○ If timer expires, go to scheduler

Preemptive Scheduling
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● How does the OS know that the timer expired?

Preemptive Scheduling
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Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to 
force execution at kernel after 
some time quantum

• E.g., 1000Hz, on each 1ms.. OS Kernel (Ring 0)

Ring 3
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Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to 
force execution at kernel after 
some time quantum

• E.g., 1000Hz, on each 1ms..

After 
1ms

Timer interrupt!

OS Kernel (Ring 0)

Ring 3
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Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to 
force execution at kernel after 
some time quantum

• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource 

contention

OS Kernel (Ring 0)

Ring 3



14

Preemptive Scheduling

• Preemptive Multitasking (Lab 4)

• CPU generates an interrupt to 
force execution at kernel after 
some time quantum

• E.g., 1000Hz, on each 1ms..

• Guaranteed execution in kernel
• Let kernel mediate resource 

contention

OS Kernel (Ring 0)

Ring 3

Schedule()

iret (ring 0 to ring 3)
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● Definition: Switching the CPU to another process, which involves 
saving the state of the old process and loading the state of the new 
process

● What state?

● Where to store them?

Context Switch
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● A.K.A User Environment (JOS)

● Process management info
○ State (ready, running, blocked)
○ PC & Registers, parents, etc
○ CPU scheduling info (priorities, etc.)

● Memory management info
○ Segments, page table, stats, etc

● I/O and file management
○ Communication ports, directories, file descriptors, etc

Process State: Process Control Block (PCB)
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Context Switch
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Context Switch

Context 
Switch
overhead
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● Timer granularity
○ Finer timers = more responsive, high overhead
○ Coarser timers = less responsive, more efficient

● CPU Accounting (CPU running stats)
○ Used by the scheduler
○ Useful for the programmer

Preemptive Scheduling Considerations 
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● Mechanism + policy

● Mechanisms fairly simple:
○ Save state into a PCB and Restore state from another PCB

Preemptive Scheduling Considerations 
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● Mechanism + policy

● Mechanisms fairly simple:
○ Save state into a PCB and Restore state from another PCB

● Policy choices harder:
○ When should we switch?

Preemptive Scheduling Considerations 
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● Flexibility - variability in job types
○ Long vs. short
○ Interactive vs. non-interactive
○ I/O-bound vs. compute-bound

● Issues
○ Short jobs shouldn’t suffer
○ (Interactive) Users shouldn’t be annoyed

Challenges in Policy 
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● Fairness
○ All users should get access to CPU
○ Amount of CPU should be roughly even?

● Issue
○ Short-term vs. long-term fairness

Challenges in Policy (2) 
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Goals 
● Goals (Performance metrics)

● Minimize turnaround time

● avg time to complete a job

● T
turnaround

 = T
completion

 − T
arrival

● Maximize throughput

● operations (jobs) per second

● Minimize overhead of context switches: large quanta

● Efficient utilization (CPU, memory, disk etc)

● Short response time

● T
response

 = T
firstrun

 − T
arrival

● type on a keyboard

● Small quanta

● Fairness 

● fair, no stavaton, no deadlock
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● Goals often conflict
○ Response time vs. throughput
○ fairness vs. avg turnaround  time?

Goals
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Goals and Assumptions 
● Goals (Performance metrics)

● Minimize turnaround time

● avg time to complete a job

● T
turnaround

 = T
completion

 − T
arrival

● Maximize throughput

● operations (jobs) per second

● Minimize overhead of context switches: large quanta

● Efficient utilization (CPU, memory, disk etc)

● Short response time

● T
response

 = T
firstrun

 − T
arrival

● type on a keyboard

● Small quanta

● Fairness 

● fair, no stavaton, no deadlock
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● Is there an optimal scheduling policy?
○ Even if we narrow down to one goal?

● But we don’t know about future
○ Offline vs. online

Scheduling Policies 
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● Round Robin
● SJCF
● SRTCF

Scheduling Policies 
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● Each runs a time slice or quantum: Fair

● How do you choose time slice?
○ Overhead vs. response time
○ Overhead is typically about 1% or less
○ Quantum typically between 10 ~ 100 millisec

Round Robin 

Current
process

Ready queue
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● Assume 10 jobs waiting to be scheduled, each takes 100 seconds
○ Assume no other overhead
○ Total CPU time? 1000 seconds, always

● Implications?
○ Last job always finishes at 1000 seconds
○ So what’s the point of scheduling?

Is Fairness always good?
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● Job 1 – start 0, end 100
● Job 2 – start 100, end 200
● …
● Job 10 – start 900, end 1000

● Average turnaround time =100 + 200 +… /10 = 550 sec

Non-Preemptive Scheduling or FIFO



32

● Assume each quantum is 1 second

● Job 0 – 0, 10, 20, 30, 40,…, 990
● Job 1 – 1, 11, 21, 31,…, 991
● Job 2 – 2, 12, 22, 32,…, 992
● …

● Avg turnaround time = 990+991+…/10 = 995 sec

Round Robin
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● Unfair policy was faster!

● Job 10 always ended at the same time

● Round-Robin just hurt jobs 1-9 with no gain

Is Fairness always good?
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● Imagine 10 jobs
○ Jobs 1-9 are 100 seconds
○ Job 10 is 10 seconds

● Which policy is better now?

Why use Round Robin?
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● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

Non-preemptive scheduling
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● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

● Job 0 – start 0, end 100
● Job 1 – start 100, end 200
● Job 10 – start 900, end 910

● Avg turnaround time =  100+200+…910/10 = 541

Non-preemptive scheduling
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● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

● Job 0 – 0, 10, 20, …, 900
● Job 1 – 1, 11, 21, …, 901
● Job 10 – 9, 19, 29, …, 99

● Avg turnaround time =  900 + 901 + 908 + 99 / 10 = 824

Round Robin scheduling
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● Jobs 1-9 are 100 seconds
● Job 10 is 10 seconds

● Job 0 – 0, 10, 20, …, 900
● Job 1 – 1, 11, 21, …, 901
● Job 10 – 9, 19, 29, …, 99

● Avg turnaround time =  900 + 901 + 908 + 99 / 10 = 824

Round Robin scheduling

9% work drop 

2% avg turnaround drop for 
FIFO

17% avg turnaround drop for 
RR



39

● Imagine 10 jobs
○ Jobs 1 is 100 seconds
○ Job 2-10 is 10 seconds

● Which policy is better now?
○ FIFO: average turnaround 145
○ RR: average turnaround 105

Why use Round Robin?
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● What shall we do if we care about turn-around time?
○ FIFO can be bad 

● STCF/SJF
○ schedule shortest (total completion time) job first

STCF (SJF) – Shortest Job First

A BC

T1

C arrives
A arrives

B arrives

A B C

T1

C arrives
A arrives

B arrives
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● Can we do better than Shortest Job First in terms of average 
turnaround time?
○ Assume all jobs arrive at the beginning 

● In fact, SJF can be proved to be the optimal scheduling algorithm with 
the above assumption
○ But we are not going to prove it, since this is not a theory class ☺

● SJF Advantage
○ Minimal average turnaround time

● Disadvantage
○ Difficult to know the future, has to run until finish

SJF: Pros and Cons
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STCF
● Shortest time to completion first (shortest job first)

○ Non-preemptive

A BC

T1

C arrives

A arrives B arrives
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SRTCF
● Shortest remaining time to completion first

○ Preemptive

A BC

T1

C arrives

A arrives B arrives

CC

Any potential problems?
 - Can cause starvation!
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● Need to accommodate interactive jobs
○ Need some kind of RR

● Diversity in jobs – job length, I/O mix
○ RR also appears to help

● SJF also has virtue
○ Reduce avg. turnaround time

● Can we accommodate all?

Policy Decisions
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Scheduling Policies Advantages

FIFO

RR

SJF

Response time

Throughput

Avg. turnaround time

Fairness 
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Scheduling Policies Advantages

FIFO

RR
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Response time

Throughput

Avg. turnaround time

Fairness 
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Scheduling Policy Issues

● Fairness

● Flexibility

● High utilization (efficiency)

● Good response time

● Good turnaround time
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Scheduling Policy Issues

● High utilization (efficiency)
○ Lots of processes (want diff resources) 
○ Lots of resources (want full parallelism)

● Issue?
○ How do you get the most useful work out of the system? (job 

throughput)
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Adding I/O into mix

● Resource utilization example
○ A and B each uses 100% CPU
○ C loops forever (1ms CPU and 10ms disk)
○ Time slice 99ms: roughly 30% of disk utilization with Round Robin 

and roughly 70% of CPU utilization
○ Time slice 1ms: roughly 90% of disk utilization with Round Robin 

and nearly 100% of CPU utilization

● What do we learn from this example?
○ Small time slice can improve utilization / fairness to I/O jobs
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Handling I/Os

CPU

I/O

A

A

A

A

A

A

BA

A
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Handling I/Os

CPU
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