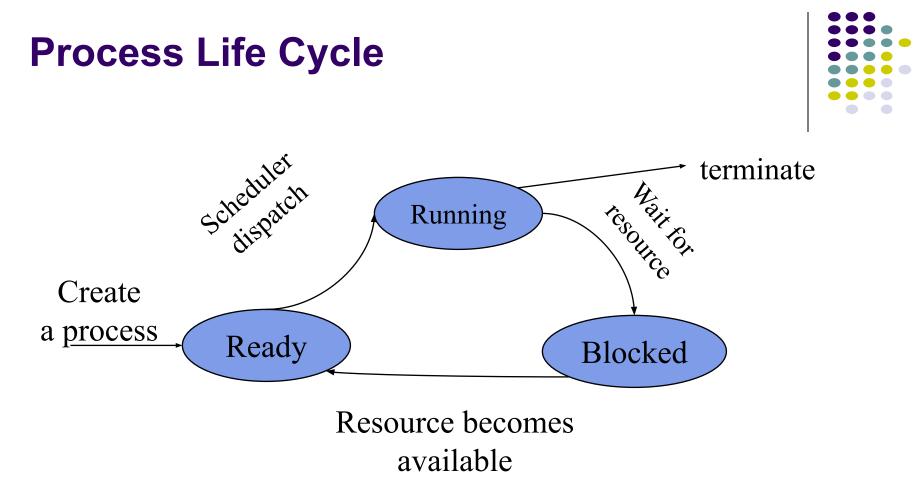

# **Multi Processes and Scheduling**

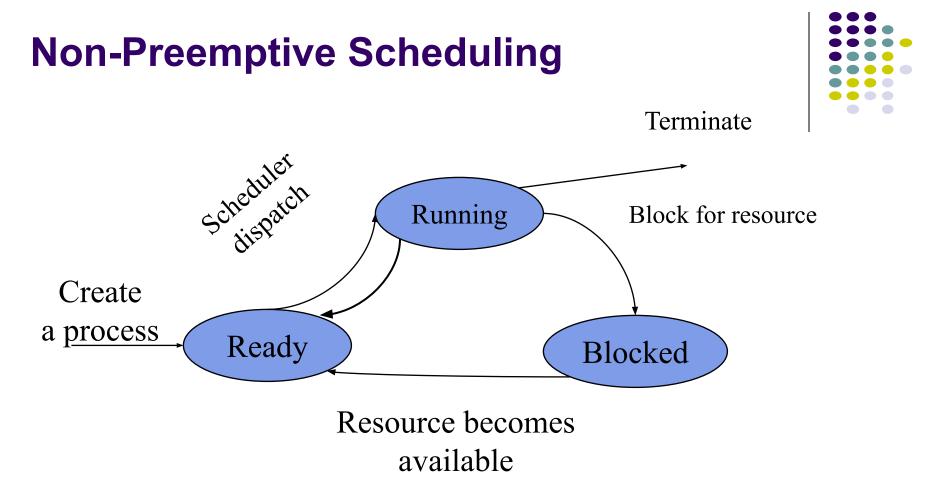
# ECE 469, Mar 04

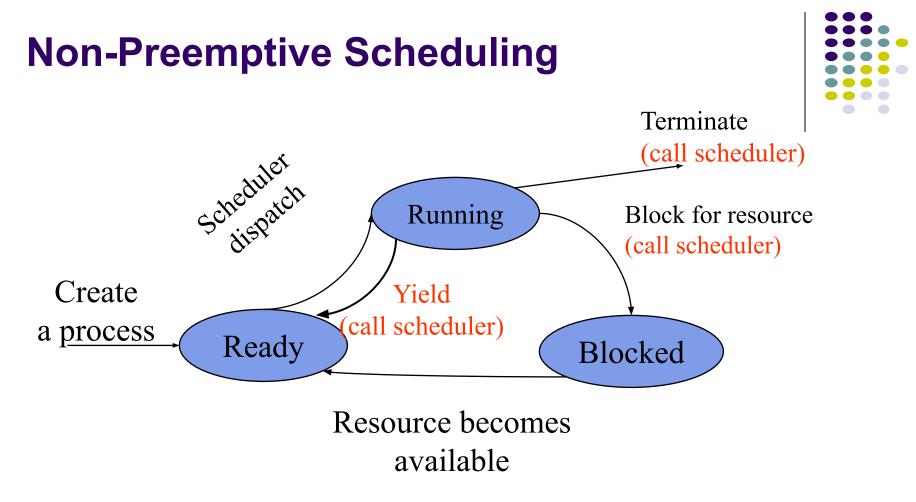
Aravind Machiry



# **Recap: Users, Programs, Processes**





- Users have accounts on the system
- Users launch programs
- There can be multiple programs (i.e., processes), which want to run at the same time


# **Sequential execution of each process**

- Assuming single-threaded program
- No concurrency inside a process
- Everything happens sequentially
- Often with interleaved CPU/IO operations









- Any issues?
- What if a process runs:







## **Concurrent Processes**

- Processes in a system can execute concurrently (multitasking)
- Motivations for allowing concurrent execution
  - Physical resource sharing (system utilization)
  - Computational speedup with several CPUs
  - Modularity (chrome)
  - Convenience (desktop: chrome, google drive, clock, weather)
- Logical resource sharing (eg password files)



# **Time Sharing Systems**

Timesharing systems support interactive use:
 each user feels he/she has the entire machine

- How?
  - optimize response time
  - $\circ$  based on time-slicing

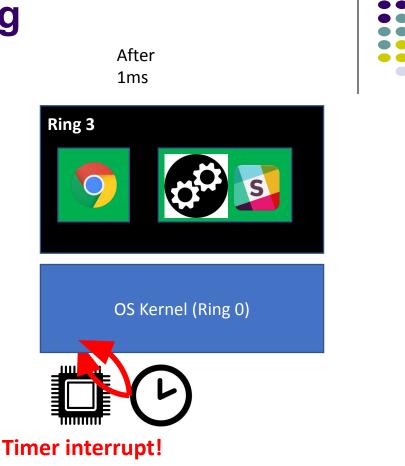


- Basic idea
  - $\circ$   $\,$  before moving process to running, OS sets timer  $\,$
  - if process yields/blocks, clear timer, go to scheduler
  - $\circ$   $\,$  If timer expires, go to scheduler

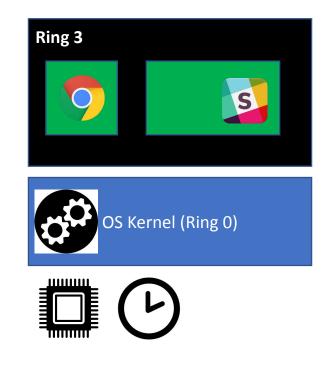


• How does the OS know that the timer expired?






- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
  - E.g., 1000Hz, on each 1ms..






- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
  - E.g., 1000Hz, on each 1ms..



- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
  - E.g., 1000Hz, on each 1ms..
- Guaranteed execution in kernel
  - Let kernel mediate resource contention





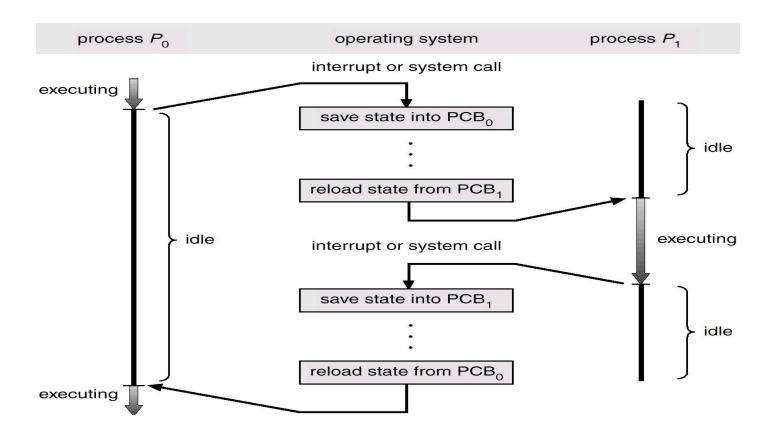
- Preemptive Multitasking (Lab 4)
- CPU generates an interrupt to force execution at kernel after some time quantum
  - E.g., 1000Hz, on each 1ms..
- Guaranteed execution in kernel
  - Let kernel mediate resource contention



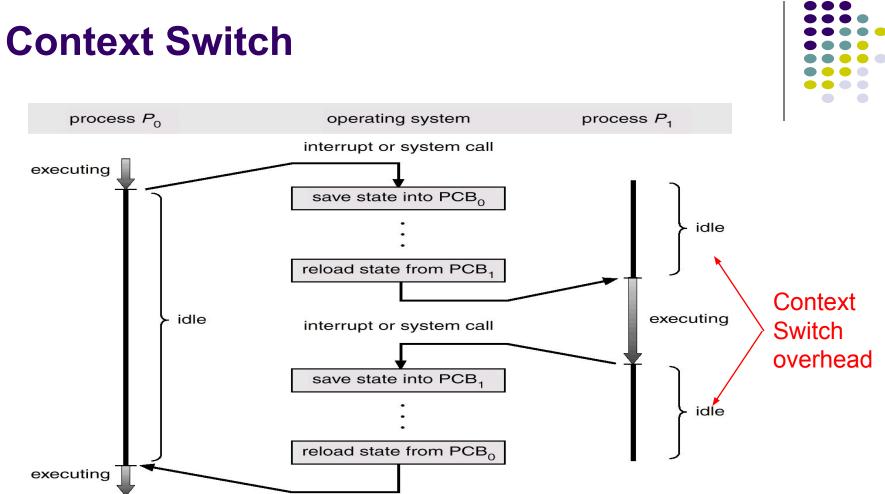


## **Context Switch**




 Definition: Switching the CPU to another process, which involves saving the state of the old process and loading the state of the new process

- What state?
- Where to store them?


#### **Process State: Process Control Block (PCB)**

- A.K.A User Environment (JOS)
- Process management info
  - State (ready, running, blocked)
  - PC & Registers, parents, etc
  - CPU scheduling info (priorities, etc.)
- Memory management info
  - Segments, page table, stats, etc
- I/O and file management
  - Communication ports, directories, file descriptors, etc

## **Context Switch**







# **Preemptive Scheduling Considerations**

- Timer granularity
  - Finer timers = more responsive, high overhead
  - Coarser timers = less responsive, more efficient

- CPU Accounting (CPU running stats)
  - $\circ$  Used by the scheduler
  - Useful for the programmer



# **Preemptive Scheduling Considerations**

- Mechanism + policy
- Mechanisms fairly simple:
  - $\circ$  Save state into a PCB and Restore state from another PCB

# **Preemptive Scheduling Considerations**

- Mechanism + policy
- Mechanisms fairly simple:
  - Save state into a PCB and Restore state from another PCB
- Policy choices harder:
  - When should we switch?

# **Challenges in Policy**

• Flexibility - variability in job types

- Long vs. short
- Interactive vs. non-interactive
- I/O-bound vs. compute-bound

#### Issues

- Short jobs shouldn't suffer
- (Interactive) Users shouldn't be annoyed



# **Challenges in Policy (2)**

#### • Fairness

- All users should get access to CPU
- Amount of CPU should be roughly even?

#### • Issue

• Short-term vs. long-term fairness



### Goals

- Goals (Performance metrics)
  - Minimize turnaround time
    - avg time to complete a job
    - $T_{turnaround} = T_{completion} T_{arrival}$
  - Maximize throughput
    - operations (jobs) per second
    - Minimize overhead of context switches: large quanta
    - Efficient utilization (CPU, memory, disk etc)
  - Short response time
    - $T_{response} = T_{firstrun} T_{arrival}$
    - type on a keyboard
    - Small quanta
  - Fairness
    - fair, no stavaton, no deadlock



#### Goals



- Goals often conflict
  - $\circ$  Response time vs. throughput
  - $\circ$  fairness vs. avg turnaround time?

# **Goals and Assumptions**

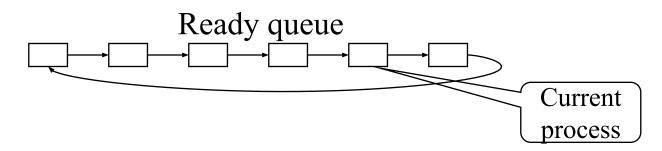
- Goals (Performance metrics)
  - Minimize turnaround time
    - avg time to complete a job
    - $T_{turnaround} = T_{completion} T_{arrival}$
  - Maximize throughput
    - operations (jobs) per second
    - Minimize overhead of context switches: large quanta
    - Efficient utilization (CPU, memory, disk etc)
  - Short response time
    - $T_{response} = T_{firstrun} T_{arrival}$
    - type on a keyboard
    - 🔹 Small quanta 🚽
  - Fairness
    - fair, no stavaton, no deadlock



# **Scheduling Policies**

Is there an optimal scheduling policy?
 Even if we narrow down to one goal?

But we don't know about future
 Offline vs. online




# **Scheduling Policies**

- Round Robin
- SJCF
- SRTCF

## **Round Robin**





- Each runs a time slice or quantum: Fair
- How do you choose time slice?
  - Overhead vs. response time
  - Overhead is typically about 1% or less
  - Quantum typically between 10 ~ 100 millisec

#### Is Fairness always good?



- Assume 10 jobs waiting to be scheduled, each takes 100 seconds
  - Assume no other overhead
  - Total CPU time? 1000 seconds, always
- Implications?
  - Last job always finishes at 1000 seconds
  - So what's the point of scheduling?

#### **Non-Preemptive Scheduling or FIFO**

- Job 1 start 0, end 100
- Job 2 start 100, end 200
- ...
- Job 10 start 900, end 1000

• Average turnaround time =100 + 200 + ... /10 = 550 sec





#### **Round Robin**

- Assume each quantum is 1 second
- Job 0 0, 10, 20, 30, 40,..., 990
- Job 1 1, 11, 21, 31,..., 991
- Job 2 2, 12, 22, 32,..., 992
- ...

• Avg turnaround time = 990+991+.../10 = 995 sec



#### Is Fairness always good?

• Unfair policy was faster!

• Job 10 always ended at the same time

• Round-Robin just hurt jobs 1-9 with no gain



#### Why use Round Robin?

- Imagine 10 jobs
  - $\circ$   $\,$  Jobs 1-9 are 100 seconds  $\,$
  - Job 10 is 10 seconds

• Which policy is better now?



#### **Non-preemptive scheduling**

- Jobs 1-9 are 100 seconds
- Job 10 is 10 seconds



## **Non-preemptive scheduling**

- Jobs 1-9 are 100 seconds
- Job 10 is 10 seconds

- Job 0 start 0, end 100
- Job 1 start 100, end 200
- Job 10 start 900, end 910
- Avg turnaround time = 100+200+...910/10 = 541



## **Round Robin scheduling**

- Jobs 1-9 are 100 seconds
- Job 10 is 10 seconds

- Job 0 0, 10, 20, ..., 900
- Job 1 1, 11, 21, ..., 901
- Job 10 9, 19, 29, ..., 99
- Avg turnaround time = 900 + 901 + 908 + 99 / 10 = 824



## **Round Robin scheduling**

- Jobs 1-9 are 100 seconds
- Job 10 is 10 seconds

9% work drop

**2%** avg turnaround drop for FIFO

- Job 0 0, 10, 20, ..., 900
- Job 1 1, 11, 21, ..., 901
- Job 10 9, 19, 29, ..., 99

17% avg turnaround drop for RR

• Avg turnaround time = 900 + 901 + 908 + 99 / 10 = 824

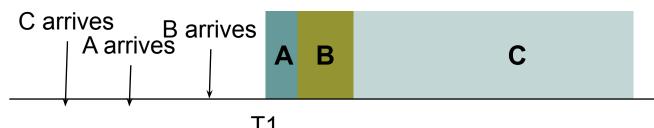


## Why use Round Robin?

- Imagine 10 jobs
  - $\circ$  Jobs 1 is 100 seconds
  - $\circ$  Job 2-10 is 10 seconds

- Which policy is better now?
  - FIFO: average turnaround 145
  - $\circ$  RR: average turnaround 105




## STCF (SJF) – Shortest Job First

- What shall we do if we care about turn-around time?
  - FIFO can be bad



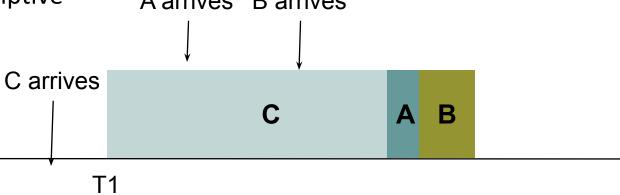
#### • STCF/SJF

• schedule shortest (total completion time) job first



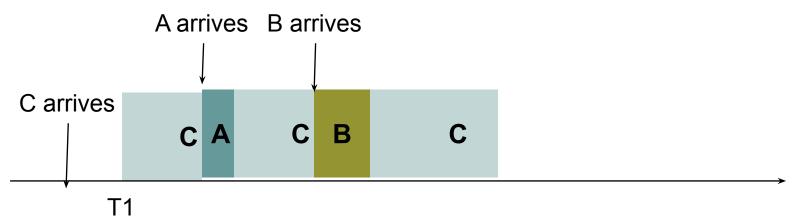


## **SJF: Pros and Cons**




- Can we do better than Shortest Job First in terms of average turnaround time?
  - Assume all jobs arrive at the beginning
- In fact, SJF can be proved to be the optimal scheduling algorithm with the above assumption
  - But we are not going to prove it, since this is not a theory class 😌
- SJF Advantage
  - Minimal average turnaround time
- Disadvantage
  - Difficult to know the future, has to run until finish

### STCF


- Shortest time to completion first (shortest job first)
  - Non-preemptive A arrives B arrives





### SRTCF

Shortest remaining time to completion first
 Preemptive



### Any potential problems? - Can cause starvation!

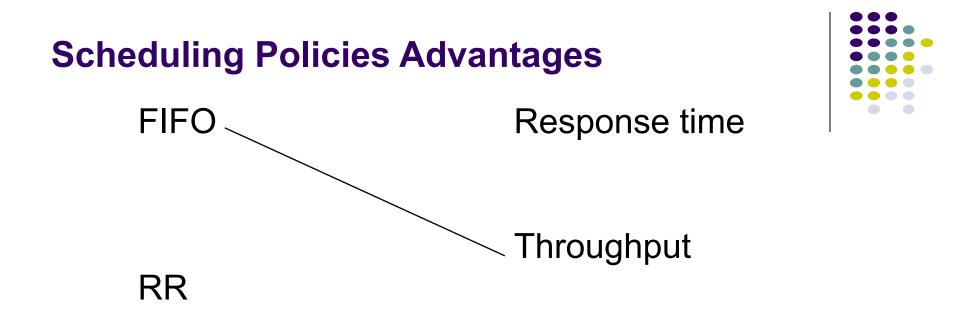
## **Policy Decisions**

- Need to accommodate interactive jobs
  Need some kind of RR
- Diversity in jobs job length, I/O mix
  RR also appears to help
- SJF also has virtue
  - Reduce avg. turnaround time
- Can we accommodate all?

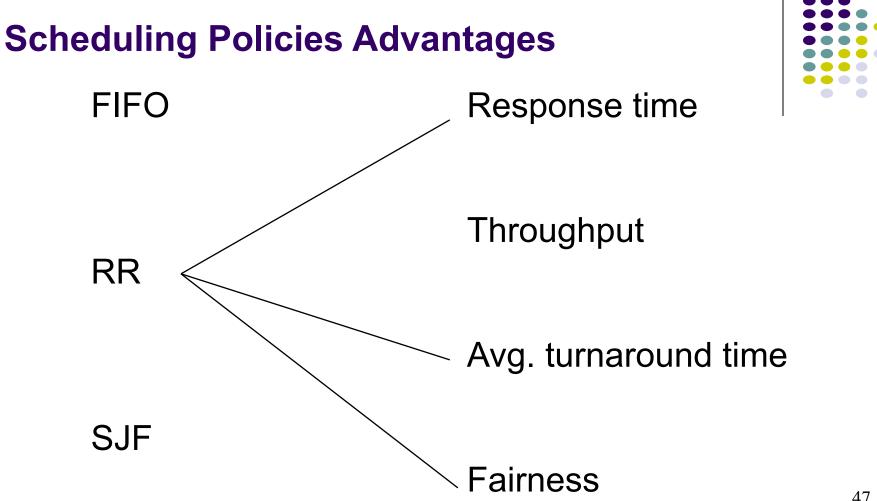




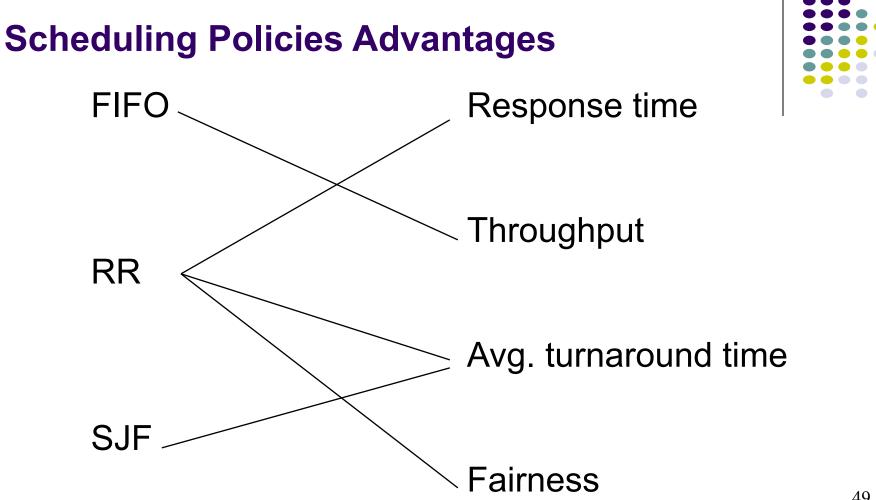



## Throughput




## Avg. turnaround time

SJF


#### Fairness



#### Avg. turnaround time







## **Scheduling Policy Issues**

- Fairness
- Flexibility
- High utilization (efficiency)
- Good response time
- Good turnaround time



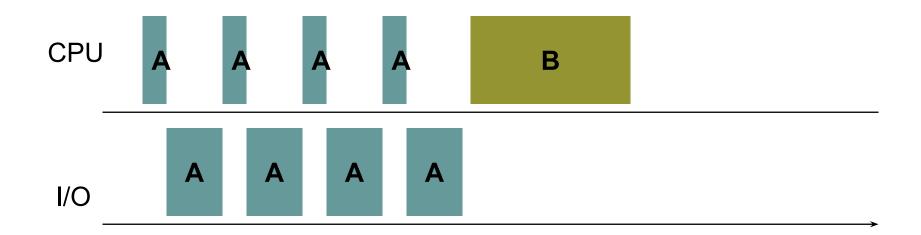
# **Scheduling Policy Issues**

- High utilization (efficiency)
  - Lots of processes (want diff resources)
  - Lots of resources (want full parallelism)

- Issue?
  - How do you get the most useful work out of the system? (job throughput)



# Adding I/O into mix




- Resource utilization example
  - $\circ~$  A and B each uses 100% CPU
  - Cloops forever (1ms CPU and 10ms disk)
  - Time slice 99ms: roughly 30% of disk utilization with Round Robin and roughly 70% of CPU utilization
  - Time slice 1ms: roughly 90% of disk utilization with Round Robin and nearly 100% of CPU utilization

- What do we learn from this example?
  - $\circ$  Small time slice can improve utilization / fairness to I/O jobs

